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Abstract. Two kinds of transformation for the time-dependent ®dimger equation, i.e.

the differential and integral transformations, are introduced. If one considers only stationary
solutions of this equation, both transformations reduce to the well known Darboux transformation
for the stationary Sckidinger equation. When applied to non-stationary solutions, they give
different results. Both transformations are invertible in appropriate spaces. With the help of
these transformations alternative systems of coherent states to those in the literature are obtained
for isospectral Hamiltonians with equidistant spectra. These transformations are also applied to
the construction of coherent states for Hamiltonians whose spectrum consists of an equidistant
part and one separately disposed level with an energy gap equal kosttipped levels.

1. Introduction

Recently [1,2] the coherent states for isospectral oscillator Hamiltonians, previously
obtained in [3] and investigated in [4], have been studied. Another type of Hamiltonian,
namely Hamiltonians with quasi-equidistant spectra (e.g., a spectrum with lacunae) also
exists. It can readily be seen that both types of Hamiltonian can be obtained from the
harmonic oscillator Hamiltonian through the known Darboux transformation [5].

The coherent states are non-stationary solutions of the time-dependeiidiBger
equation. To obtain the solutions of this equation, one can combine the ordinary Darboux
transformation operator technique with the propagator operator technique [6]. In this paper,
to obtain the solutions of one time-dependent 8dimger equation, if the solutions of
another one are known, we introduce two types of time-dependent transformation. In
the case of stationary solutions, both types of transformation reduce to the Darboux
transformation; however, being applied to non-stationary solutions, they give different
results. One can consider both types of transformation as a generalization of the Darboux
transformation to the time-dependent Sidinger equation. This approach is simpler to
apply to concrete calculations than the propagator operator technique, especially when the
Hamiltonian depends on time.

The transformations introduced, being invertible, permit one to construct a symmetry
algebra for the new Scbdinger equation, if the symmetry algebra for the initial one is
known. In particular, if for the initial Sclidinger equation one knows such integrals of
motion as the creation and annihilation operators, similar operators can be constructed for
the new Schidinger equation, and their eigenstates can be obtained by merely acting on the
eigenstates of the initial operator by the transformation operator. In this manner, one can
obtain different systems of coherent states for the new Hamiltonians, if the coherent states for
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the initial one are known. In this paper alternative systems of coherent states to those given
in [1] are obtained for isospectral oscillator Hamiltonians and for the anharmonic oscillator
Hamiltonians with quasi-equidistant spectra. A comparison of the obtained coherent states
with those of [2] is made.

The plan of the paper is as follows. In section 2, we introduce the time-dependent
transformation operators and investigate some of their properties. In section 3, we give
briefly the known properties of the coherent states for the harmonic oscillator potential.
Then we construct one class of potentials with quasi-equidistant spectra, and for this class
as well as for the isospectral oscillator Hamiltonians we construct the systems of coherent
states.

2. Transformation operators

Let us consider the time-dependent Salinger equation for a particle with a potential
energy—Vo(x, t):
[0, + 8%+ Vo(x, DY (x,1) =0 8 =0/, 32 =29, -0, x € [a, b]. (1)
We say that an operatdr acting on the solutions of equation (1) is a transformation operator
if the following equality holds:

L(id, + 07 + Vo(x, 1)) = (10 + 87 + Va(x, )L, @)
The operatot. defined by this relation will transform the solutions of equation (1) into the
solutions of another Sctdinger equationg(x, t) = Ly (x, t):

[, + 82+ Va(x, D]p(x, 1) =0 x € [a, b]. ©))

2.1. Differential transformation operators

Let the operatot. be a first-order differential operator of the form
L = Lo(x,t) + L1(x, t)0,. (4)

We do not include in (4) the derivative with respect #osince it, being found from
equation (1), transform& into the second-order differential operator, but we will restrict
ourselves by the first-order differential operators. Equation (2) results in a system of
equations for the functionsg(x, t), L1(x, t), and the potential difference

A(x,t) = Hi — Hy = Vi(x, 1) — Vo(x, 1) (%)
L =0  iLy+2Lo=—ALi  LiVor —iLo — Lo = ALg.  (6)

We use here the conventional notation for derivatives: = 8f/9x, fix = 02f/9x?,

fo = 8kf/axk, and omit the arguments of the functions if this does not cause a
misunderstanding. The latter system can readily be integratediwithC (¢) as a constant of
integration, and we obtain for a functien= u(x, r) defined by the relation, /u = —Lo/L1

the following equation:

iu; +uee + (Vo— Cu =0.

The functionL, = L,(¢) remains arbitrary, and the quotient= Ly/L; does not depend on
the constan€ and, consequently, it can be calculateddos 0. The functioru(x, t), called
a transformation function, is in this case a solution of the initial 8dimger equation (1).
For the potential differencel(x, ) we obtainA = —i(logL1); — 2r,. The function
L1(t) can be chosen such that it ensures the reality condition for the fundtiofhis
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condition, when presented in the forrfloig|L1]?), = 2(r} —ry), results in the condition
for the transformation function

(log—;) =0 ©
u XXX

where the asterisk implies complex conjugation. If the functignis chosen as real,

Ly = exp<2/ dr Im(Iogu)xx) (8)
the transformation function(x, ) completely defines the potential difference

A = (log [u[?)., ©
and the transformation operator

L=Lu™| " al = Ly(—uyju+9y). (10)

The operator determinants, such as those in formula (10), must be considered as
differential operators obtained by the development of the determinants in the latter column
with the functional coefficients placed before the derivative operators.

The action of the operatak on the transformation function gives zero. However,
if the transformation functiom is chosen in accordance with formula (7), we can readily
verify that the function

1
- L]_u*
is a solution of the new Scodinger equation (3).

If we use this function as the transformation function for the second transformation,
then the new potential difference differs from the one previously obtained by sign, and
we return to the initial Sclidinger equation. The transformation operator for this case
is LT = —Lq(u®/u* + 9,). Itis clear that the successive action of the operaforsnd
L™ transforms, in the general case, one solution of equation (1) into another solution, and
consequenthy.™ L is a symmetry operator for this equation. In full analogy, the operator
LL™ is a symmetry operator for equation (3).

Let Tp and Ty be the linear spaces of the solutions of equations (1) and (3), respectively,
defined over the complex number figld It follows from formula (10) that KeL is a one-
dimensional space spanned on the transformation funeatiand the set of functiongp:
¢ = Ly, ¥ € To} does not span all spadg. We shall consider later the initial potential
as a stationary one¥y = Vp(x), and choose the transformation function as a stationary
solution of the initial equation (Lu(x, t) = u,(x) exp(—iat), Houy(x) = auy(x) where
Ho = —32 — Vp(x) is the initial Hamiltonian. In this cas&; = 1 and the prototype of
function ¢ (11) designated by (x, t) = i, (x) exp(—iat) corresponds to the second proper
function of the HamiltonianH, with the same proper value. This function can be found
from the condition for the WronskiaW (u, ii,) = 1:

%o (11)

g (x) = ua(x)/ugzdx Li(x,t) = go(x, 1).

In the majority of cases, the potentidls(x, t) being of physical interest are such that
it is possible to introduce a Hilbert space structwfg{R) (the interval of variablex for
equation (1),R = [a, b], can span the whole real axis) in the spdgavith the scalar product
appropriately defined. In this case, an integral of motion usually exists for equation (1),
which is a self-adjoint second-order differential operator with a discrete spectrum. The set
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of its discrete eigenfunctiong; (x, r) forms a discrete basis set of the spzicﬁR). The
functions y; (x, t) are usually ordered in such a way that the numbef each function
coincides with its number of zeros. If we demand the transformation funetiom be
nodeless for alt andx € [a, b], the potential differencel (x, ) will be a regular function

on [a, b] and the transformation operatdr will be well defined. There exists an unique
(up to a constant factor) nodeless functionZif(R). In contrast, beyond the spaég(R),
there are many nodeless functions suitable for use as transformation functions (for the
stationary case see [7,8]). In this paper we shall consider the restriction of opgrator
on the space.3(R) and designate it by the same symbal We shall also suppose that
9o = 1/(Liu*) € L3(R) whereL3(R) is the space of the square integrable on the interval
R solutions of equation (3). In this cageg L3(R).

In our case the spacE%(R) is invariant under the action of the symmetry operator
L*L, and the spacéf(R), defined as the image of the spabﬁR) induced by operator
L, is included in the spacg?(R). The spacd.2(R) is a join of the spacd.2(R) and the
linear hull spanning the functiopy. The systen{(Liu*)~1, L1;} forms a basis in the space
L2(R), in the casgy;} is a basis inL3(R).

Under the aforesaid hypotheses for the functignve have foryr e L%(R) the equality
[f uTtLydx = uly. It follows that for everyp € L2(R) we can define an integral
transformation operata¥/

Mga:u/ u"tpdx. (12)

—0Q
We can readily verify thaM Ly =  and LM¢ = ¢, e.g., operatoM is inverse to
L. It is necessary to note thf po(x, 1) = ii(x,t) &€ LS(R) if we define the action of the
operatorM on the functiongg by the same formula.
Transformation (4), if repeated times, leads to atv-order transformation operator of
the form

uy u e 1
LN = LyOW  ug uz, ...ouy) | . . (13)
"‘(11;/) ”(21:) . a)EN)
and a potential difference of the form
Ay = (l0g|W(u, uz, ..., un)*)sx (14)
if the transformation functions, u,, ..., u, satisfy the reality condition
Wuq, us, ...,
[Iog (1, uz, ..., uy) } —o. (15)
W*(ug, uz, ..., un) ooy
For the real functiornL y(r) we have
Ly(t) = exp 2/ dr Im[log W (i, uz, ..., un)]x- (16)
Here we use the conventional symbW (uy, us, ..., uy) to denote the Wronskian of

functionsus, uz, ..., uy.

The operatorL™’, being applied to the transformation functian, gives null.
Nevertheless, for the transformation function subjected to the reality conditions (7) and
(15), we have the following solutions of equation (3) with potential difference (14):

WO (ug, ..., uy)
Ly@)W*(uy, ..., un)

e®(x, 1) =
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whereW® (uy, ..., uy) is the Wronskian of the functionsy, ..., uy exceptu;.

If the transformation functiont = u; = ¢, € L%(R) hasn zeros, then potential
difference (9) hag poles and the solutions obtained with the help of transformation operator
(10), Ly;, does not belong td.2(R). Nevertheless, the second transformation with the
transformation functiom, = ¥, € Lg(R) removes all singularities and the transformation
operatorL® (13) is well defined. This fact reflects the known properties of the Wronskians
constructed from the functions belonging I@(R) [9]: the WronskianW (ug,, ..., ux,)
conserves its sign fag;, € L%(R) if forall k =0,1,2,..., the numberg; being equal to
the number of zeros of the functiomg,, the inequality(k — k1)(k — k2) ... (k —ky) > O
holds. In particular, the functions, may be two by two juxtaposed functions.

If the transformation functions are stationary solutions of equation (1) of the form
u(x,t) = uy(x) - exp(—iat), then the potential difference (14) does not depend on time,
the reality condition (15) holds for all transformation functions, and formulae (13) and (14)
reduce to the known formulae of the Darboux transformation repestéiches [9, 10]. It
is not difficult to establish that the symmetry operafotL is a polynomial function of
the initial Hamiltonian [11]: L*L = (Ho — a1)(Hg — a2) ... (Hg — ay), and LL™ is the
same function of the final HamiltonianLL™ = (H — a1)(H — a2) ... (H — ay). This
property forms the basis of the known factorization method [12,13]. To obtain the time-
dependent solutions of the nonstationary 8dimger equation, we can also use in this case
the propagator operator technique combined with the usual Darboux transformation. This
approach is realized in [6].

2.2. Integral transformation operators

Integral transformations for the stationary Sifinger equation are well studied in the
theory of the inverse scattering problem (see, e.g., [14,15]) and in its application to
solving the nonlinear equations [16]. The connection of these transformations with the
Darboux transformation is, in particular, discussed in [11, 17]. The possibility of an integral
representation of the Darboux transformations is noted by Faddeev [18]. This possibility is
due to the fact that the Wronskian of functioftg and -, can be calculated with the help

of the integral

WWmm=wrﬂq/mwm+c

The integral transformation can be generalized to the time-dependendd8aier
equation. One can find one of these generalizations in [19, 20]. In this section we introduce
integral transformations, more general in some sense, for the time-dependeidiSgpéir
equation.

It is intuitively clear that the transformation inverse to the differential one (if it is
invertible) must be an integral one. On the other hand, the initial and finab8iciger
equations are equivalent, and it is unimportant whether one starts from equation (1) or from
equation (3). Therefore, the operator inversé.twill, in turn, be a transformation operator
for equation (3).

To clarify these ideas, let us consider some detail in the definition of the operator
inverse to the differential operatdr of the preceding section. Operatbrbeing applied to
a function f (x), gives another function

ﬂ@z—%ﬂﬂ+ﬁ@) (17)
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If we know the functionF’, we can readily find the functioyi from differential equation (17):

fx) = u(C + /x u1F (x) dx). (18)

X0

It is clear that we have indeed obtained a family of functigndn this formula, functioru
is a solution of equation (1) and functidnis the solution of another equation, namely (3).
In order that the right-hand side of relation (18) be expressed through the solutions of the
same equation, we have (according to relation (11)) to replace 1/(Liu*). To define
correctly the integral transformation operator, it remains now to take into consideration the
dependence of all functions on time

Let functionsu(x,t) and vy (x,t) be solutions of equation (1). Define a function
w*(x, 1), ¥(x, 1) = w*, ¥) = wx, t) by the following relations:

w, (U, ) = u"y (19)
w, (W*, ) =i Yy —uiy). (20)
Using equation (1) we can readily establish tha} = w,, and the functionw is well

defined by relations (19) and (20). Hence it follows that the functionan be calculated
in two different manners:

w= if W* Yy —uly) dt + Ce(x) (21)

w=/mmwm+cm> (22)

X0
For the integration constant$; (x) and C,(¢), using (19), (20) and equation (1), we find
C1(x) = (U*Y)|i= Co(t) = 1" Y — U Y) | xmso-
Let functionu, named transformation function, be a fixed solution of equation (1). Also
let spaceTp; C Tp be a linear space of functiong such thatC;(x) = 0. Designate as

Too(C To) a linear space of functiong such thatC,(r) = 0. For every spacép; and Tp,
we can define an integral transformation operatbas follows:

wu*, )
Li(t)u*
where functionw (u*, ) is defined by formula (21) for the spa@g; and by formula (22)
for Tpo. The straightforward calculation persuades us that function (23) is a solution of the
new Schodinger equation (3) if the transformation functi@mbeys the reality condition (7)
and the potential differencd and functionL,(z) are calculated by formulae (9) and (8),
respectively. By virtue of the fact that functign (11) satisfies the same equation (3), the
constantsC; and C, from formulae (21) and (22) can be put equal to zero.

Note that if the transformation functianis such that:~* is square integrable function
(as it was supposed in subsection 2.1), tfl%ﬁR) C Toz- This is the reason that the
transformation operator (12) is defined by formulae (22) and (28 &) = 1 and with the
replacement* — u L.

Consider for definiteness the spdg. OperatorM induces inT; a subspacéi; = {¢:
¢ = My, ¥ € To1}. Let us define in the spac®; a differential operatol. of the form

L = Ly(t)(u* /u* + d,) (24)

which, obviously, in terms of equation (3) is a differential transformation operator for this
equation and, consequently, it obeys the equation

(i0; + 82 + Vo(x, D)L = L(i9; + 07 + Va(x, 1)).

o0, 1) = My (x, 1) = 23)
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It is not difficult to establish thaL.p = LMy = ¢ andMy = MLy = ¢, e.g., operatoL
(24) is inverse taM, which obeys equation (2).

Formula (23), by analogy with the differential transformation, can be generalized to
N transformation functions of the form

w, Uy, ..., uN)
(x,1) = . 25
v Ly(Ow(us, -, uy) (23)
The definition of the functionw(uy, ..., uy) depends on the parity o¥. If N is even,

then we have

w(u3, u1) w(uy, u1) w(uy, u1)
w(u3, us) w(uy, us) e w(uy, usz)
w, ..., uy) = : : . : (26)
wui, uy-1) wuy, uy—_1) w(uy, uy-1)
and
14 w(us, V) w(uy, ) wy, ¥)
ui w(uy, u1) w(uy, u1) w(uy, u1)
w, ur, ... uy) =| 43 w(uz, u3) w(uy, u3) w(uy, us) | 27)

uy—1 wi, uy_1) wuy, uy_1) w(uy, uy—1)

For odd N we have

uy  w(ui,uz)  wui, ua) w(u, uy-1)
uy  w(uz, uz)  w(uz, us) w(uz, uy-1)
Couy) = | s wg uz)  w(ug, us) w (g, uy_1) (28)
uy wuy,uz) wuy,us) w(uy, un-1)
and
w(ul, ¥) w(uz, ¥) w(uy, ¥)
w(ul, uz) wui, uz) - w(uy, uz)
w(, u, ..., uy) = : : . . (29)

w(uy, un—1) wusz, uy_1) w(uy, un-1)
The formulae for the functiorLy(¢), the potential differencedy(x,t), and the reality
condition coincide with (14), (16), and (15) with the replacemeniyoby w. The functions
w(u?, u;) from the determinants (26)—(29) are defined by formulae (21) or (22) to constant
factors C; ;. One can choose these constants to ensure the regularity condition of the
potential difference. Similar constants entering the functwiig’, ) can, without loss of
generality, be put equal to zero since the new 8dimger equation also has the following
solutions:

Ly@Ow® (uy, ..., uy)

P x, 1) =
w(ug, ..., uy)

wherew® (uy, ..., uy) is to be calculated for eveN by formula (28) and for odav by
formula (26) with the set of functionsg, ..., uy except the functiom.

For evenN, there always exists the possibility of choosing the transformation functions
to ensure the reality condition of the functian(uy, ..., uy). For this purpose, we must
assumeuy = ux_1,i = 1,..., N/2 and choose the constarf; such that the matrix
of determinant (26) be Hermitian. Its determinant will then be real. If the transformation
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functions satisfy the conditions; (¢, t) = 0 andu;,(a,t) < oo, thenC5(t) = 0 atxo = a
for all transformation functions; and the functionsgr € L%(R) satisfying the zero boundary
conditions. Formulae (22) and (25)—(27) define, in this case, the transformation discussed
in [19, 20].

Let us now consider a special case corresponding to the stationary solutions of
equation (1) of the formy (x, 1) = Ve (x, 1) = e 'y (x). The reality condition (7) holds
for all stationary transformation functions. For the present instance (e.g., the harmonic
oscillator potential) the discrete spectrum of the initial Hamiltonian is bounded below by
the valueE = Enin. It is evident that ifyg(x, 1) € LS(R), the transformation function
g (x,t) ¢ L3(R) (in the casex < Emin), andgg = (Liu*)~ € L$(R) thenC;(x) = O for
any ¥ attg = —i - co. It follows thatLg(R) C Toy and in the spacég(R) formulae (23)
and (21) define an integral transformation operator actinf}im) - L%(R). This operator
cannot directly give the functiopy by action on any functiony € Lg(R). The function
w, being defined by relation (21), is proportional to the Wronskian of the functig(s)
andy ¢ (x). The action of the operatavl on stationary stategz(x, ¢r) gives, to a constant
factor, the same result as the differential operator (10). One can obtain from formulae (25)—
(27) the integral transformations for the stationary solutions of the @8ahger equation
well known in the theory of inverse scattering. For the non-stationary statesr) the
integral transformation and the differential one give different results.

It is necessary to note that we can extend the domain of action of the opkfdteyond
the spacel; to all functionsy/ (x, r) such that the conditiod’; (x) = O holds.

3. Coherent states

OperatorsL (10) andM (23) are invertible in the corresponding spacesg i$ a symmetry
operator for the initial Scliddinger equation, then for the final one we can construct two
corresponding independent symmetry operatoes LgL~* andh = MgM~1. It is clear
that if the sets of operatoig}, {1}, {1} form algebras;, H, H, then they are isomorphic.
If, however,G is an algebra of differential operators, thBhand H are algebras of integro-
differential operators.
Thus, for creatiorz™ and annihilationa operators for an harmonic oscillator we can
construct the following operatordi* = LatL*, b = LaL*, b = La*L~t, b = LaL™?,
bt = MatM~1, b= MaM~1. Operatorsh™ andb will be the differential ladder operators
for the new Hamiltonian eigenfunctions, but they do not satisfy the appropriate commutation
relation and cannot play the role of creation and annihilation operators. OpeEatBTs
andb, b* being integro-differential, in contrast, conserve all the properties of annihilation
and creation operators. It is clear that functigns= Ly, and@, = My, will be proper
functions for these operators and, consequently, they can be treated as coherent states for
new Hamiltonians if we define the coherent states as proper states of an annihilation operator.
Now we shall give a brief survey of the well known properties of the coherent states of
the harmonic oscillator potential needed for our purposes.

3.1. Harmonic oscillator coherent states

Let us considely(x, 1) = Vo(x) = —x?/4. The creation and annihilation operatars(r)
anda(r) are differential operators belonging to the Lie algebra of the first-order differential
symmetry operators of equation (1). This algebra is isomorphic to the symmetry Lie algebra
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of the free-particle Sckidinger equation. Its explicit form is as follows:
a@t) = €0, +x/2) at(t) = e (=3, +x/2) amyat) —at®a@r) = 1.

We define the coherent states as the proper states of the annihilation operator. This
corresponds to the solutions of the initial Satlinger equation with separated variables:

Y (x,t) = (27'[)’1/4 exp(—zllx2 — %it +zx — %zz — %zz*)
aOv.(x, 1) = Lye(x, 1) z=¢e
If we wish to have an harmonic oscillator with a frequenosy we have to perform
the changesx? — 2wx? andr — 2wt. One can develop the functiog, on the set
of orthonormal stationary states of the harmonic oscillator) = exp[-i(n + %)I]|n),
complete inL3(R):

(30)

) >, 7"
(1) = exp(—zz* /2 —it)2 . 31
|z; 1) = exp(—zz*/ "/)gm'”> (31)

The coordinate representation of the stationary states is as follows:
Y (x, 1) = 2m) Y4y VP exp(—x? /4 — i(n + 1) He, (x)
He,(x) =27"?H, (x/\/é)

H,(z) being the Hermite polynomials [21].

It is not difficult to obtain the coordinate and momentum expectation values and their
variances in the stateg;r). The expectation energy value, for example, is equal to
(E) = (z;t|Holz; t) = zz* + }, where Hy = —32/3x? — Vp(x) is the harmonic oscillator
Hamiltonian. The Fock—Bargman representation is very useful for many cases (see, e.g.,
[22]).

(32)

3.2. Anharmonic oscillator potentials

3.2.1. Consider first the isospectral oscillator potentials previously obtained in [3] and then
studied in [4, 1]. To obtain these potentials, we use the differential transformation operator
(10) and the following solution of the initial Sdabdinger equation as a transformation
function:

u(x, 1) = exp(it /2 + x2/4) [c +erf (x/fz)] Hou(x, 1) = —Su(x, 1).
The potential difference calculated by formula (9) has the form
A(x, 1) = A(x) = 1— 2x 07 (x) exp(—x?/2) — 207%(x) exp(—x?)

01(x) = \/Z (c +erf (x/fz)) .

The potentials are well defined fo€| > 1. The stationary-state wavefunctions can be
obtained either by integral transformation (23) or by a differential one (10), whose action
on the oscillator stationary-state wavefunctions (32) differs by an unessential constant factor.
The functions normalized to unity have the following form:

Bo(x, 1) = (/8)Y4/C2 — Lexpir/2 — x?/4 01 (x)
Opa(x, 1) = )™V + DI "2 exp(—i(n + D) (Hepa(x)e™/*

+He,(x) Q7 (x)e37/%)
n=012....
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The functionss; (x, t) are orthonormal stationary solutions of the Sahinger equation for
the new potential. Note that, in contrast to [1, 2], we give the normalization constant for
the ground-state function.

Consider first the action of the integral transformation operator (23) on the oscillator
coherent states (30). After some simple manipulations we obtain

Q(x, 1) = My, (x, 1) = (2m) 4 z¢) P exp(— 322" — 3x?)

X |:eXfXZX - %ZZ) + \/Zerf <i;;> QIl(X)] ¢#0.

The direct calculation of the norm of this function gives the following result:
o1 [ eXp(—zz")
(pzlez) = (z27) (C2 — l> )
One can expand this function on the $€; (x, 7)}. The expansion (31) is very useful for
this purpose. The expansion coefficient@g(x, t) must be calculated directly, while the
others are found by acting on expansion (31) by the transformation opeératofaking
into account the value of the integral

(Oolg:) = (2m) Y4 7H(C? = D2 exp(—3227)
we obtain the following expansion:

e 1o - z" c
@:(x,1) = exp(—322") [ﬁ; NS oo

Finally, taking into account the norm of this function, we obtain the coherent states for
isospectral oscillator Hamiltonians, normalized to unity:

JCZT-1 [t &
® — 2 _ *\1—1/2 vV s
O,(x,t) = C[1+ (C°— 1) exp(zz")] |:®o(x,t) + c . ”2:1 m@,l(x,t) )
(33)

Note that after being normalized, this function acceptsfdhe valuez = 0 and, at
¢ = 0, it coincides with the ground-state function of the new Hamiltonian. Another limiting
case,C — oo, corresponds to the harmonic oscillator potential with the energy spectrum
shifted to unity. It can readily be seen that in this case the funciiss, ), in contrast
to the coherent states obtained in [2], turn into the harmonic oscillator coherent states.
Expansion (33) permits one to calculate the energy expectation value for the coherent
state®, (x, 1):

®n+1(-xv 1+ Oo(x, f)] .

2z7%(C%2 - 1) 1

T exp—zz) +C2—1 2
The differential transformation operator (10) gives another system of coherent states:

?.(x, 1) = 2n) Mrexp(—3zz* — 327+ zx — fx2 — b1)

x|z—x- \/7 o2 ) (34)
T C+erf (x/ﬁ)

For ¢ = 0 this function reduces to the first excited-state function of the new Hamiltonian,
which has the property©®, = 0.

It is not difficult to analyse the completeness of the set of coherent states by the same
means as in [1, 2].

(E):
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3.2.2. After this work was mailed to this journal, [2] appeared in the literature and this
section appears as a result of the referee’s comments.

It is very easy, with the help of formula (31), to obtain the expansion of function (34)
on the set off®; (x, ¢)}. This expansion completely coincides with formula (5.13) of [2].
We can conclude that the differential transformation operator gives the same coherent
states as that of thew-distortion’ technique of [2] at the particular value of distortion
parameterw = 2 when the displacement operator is used to obtain the coherent states
atr = 0. The time evolution of these states is described by the usual propagator operator
technique. Comparison also shows that the series (5.13) of [2] in a coordinate representation
converges to the sufficiently simple functién (x, 0) = exp(—zz*/2)(1+zz*) Y29, (x, 0).
Parameten of [2] is connected with ouC by the relationk = /7 /2C.

Since the w-distorted’ coherent states (4.4) of [2] do not contain the ground-state
function ©¢ in their decomposition on the proper functions of the new Hamiltonian, they
are orthogonal t®y. We can conclude from this that it is impossible to reproduce by means
of the ‘distortion’ technique the coherent statés obtained by the integral transformation
operatorM.

3.2.3. Consider now the following solutions of the initial Sékinger equation as
transformation functions:

up(x, 1) = Py (x) exp(x?/4+i(2k + 2)1) Pi(x) = ()" Hey(ix)

k=012 ....
Note that Houy(x,t) = —(2k + %)uk(x, t). These transformation functions produce the
family of exactly solvable stationary potentials previously obtained in [11]:
2 2
Po—2(x) Po—1(x)
Vi ) = V() = - 4 akk — 1) 22 gz (PN g 35
1(x, 1) (x) 2 + 4k( ) Po(X) Por(x) + (35)

The discrete spectrum of the new Hamiltonians with potentials (35) consists of an
equidistant partk,.1 = n+ % n=0,1 2, ..., and a separately disposed ground-state level
Eé”‘) = —2k — % The wavefunctions of the stationary states of these potentials can be
obtained both with the help of differential transformation (10) and with the help of integral
transformation (23), whose action on the functiahgx, ¢) is distinguished by a constant
factor unessential in this case:

Pur1(x, 1) = L (x, 1) = (21) 4 (n) V2 exp(—x?/4 — i(n + 1)

x[H ey (x) Poy1(x)/ Pox (x) — nHe,—1(x)]. (36)
The ground-state function of the new Hamiltonian is found using formula (11):
o(x, 1) = exp(—x?/4+i(2k + 3)1) Py (x). (37)

The symmetry operatat* L is a linear function of the harmonic oscillator Hamiltonian,
LTL = H0+2k+% andL L™ is the same function of the anharmonic oscillator Hamiltonian
with potential (35),LL*t = H®) 4 2k + % This property permits one to easily calculate
the normalization constants of functions (36):

(@n1l@nt1) = (YulLTLIY) = 2k +n + 1.

The normalization constant for the ground-state function (37) is calculated by direct
integration:

{@olwo) = ~/2m /(2K)!.
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For k = 1, these functions are investigated in detail in [23]. However, we believe that
formula (4.19) from this work is incorrect, and, as a result, the given normalization constants
are wrong. Fotk = 2, functions (36) and (37) are investigated in detail in [24].

We shall designate the stationary-state functions of Hamilto®i&", normalized to
unity as®,, n = 0,1,2,.... They form an orthonormal basis set in the spaéeRr).

To obtain the coherent states of the new Hamiltonians, we must act on the harmonic
oscillator coherent states by the operaforor the operatorM. The operatorM, being
applied to these functions gives, to a constant factor, the following result:

/ 2k
P} (x) N 9 ) 9

Por(x) T o gyl @ X)

G.(x, 1) = @ (x, 1) = exp(—x2/4 — 72" /2 — i(2k + %)t) ( o2k
(38)

where

1(z,x) = \/Zexp(xz/Z) erf(z};) .

Decomposition (31) permits one to obtain the decomposition of function (38) on the set
of states{©;,}:

Y = z
g:(x,1) = (2m) e 2 [e VY ot \/(2/()!@0] .
s=0 '

Note, that for¢ = 0 function (31) coincides with the ground-state functi®g. Using
decomposition (31), we calculate the normalizing integral of the funetion

2k

_1 s
(el = @0 2@ 3 ey

s=0
and the energy expectation value,

=’

s!

2%
(p:| H®g:) = (2m)? [(zz*)z"“ — (@) +3 ) (ZZ*)S}- (39)

s=0
Function (38) is expressed through the probability integralzerfHowever, their explicit
expression contains only elementary functions. In particulak forO we have the harmonic
oscillator with the origin of the energy axis shifted upwards for unity. All formulae obtained
in this case go into the corresponding harmonic oscillator formulae, for example, from (39)
we obtain{p,|H @ |g,) = (2m)Y?(zz* — 1).

For k = 1 function (38) has the form
5 2(1—1zx)

@.(x,1) = N, (z + sz) exp(—zx% +zx — 322" — 3z + 3ir)  (40)

with
N. = 2r) Y41+ 1 —zz%?) Y2

The coordinate and momentum expectation values in states (40) are expressed via the
probability integral, in particular

() =z+2" +V2r(L+ L — 2299 Fexp3 — 2z +299)

o i 1—iz—iz*
X Re[e'““ Wi—z—2z7*—izz%) erfc”].

V2



Coherent states for anharmonic oscillator Hamiltonians 1023

The differential transformation (10) leads to another system of coherent states; for instance,
for k = 1 we obtain

2x :
@.(x, 1) = L (x,1) = (277)_1/4 (Z —X - ]_—I—xz) exm_%xz +zx — %ZZ* - %ZZ - %It)-

These functions a = 0 coincide with the first excited-state function of Hamiltonidi¥’
which has the property©®, = 0.

4. Conclusion

The transformations introduced here can also be used for the construction of time-dependent
exactly solvable potentials.
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